AI方面也是同样的,AI理论并不完善。
等离子体运动模型涉及到的湍流问题更是如此。
看起来可控核聚变堆建造过程中的技术问题,归根结底依旧是理论问题。
某种程度上,
这就是人类想要在还没完整满足‘前置理论’的情况下,
想要通过技术层面,实现可控核聚变堆。
这当然是有可能的。
不少领域都存在理论滞后,既技术能用就先拿来用,理论后面再说。
只是,这种方式放在可控核聚变的研究中,变得很难很难。
莫道望着白板上,自己写下的这些内容,
再思索了许久。
最终将‘湍流问题’以及对应的‘更精准的等离子体模型’圈了起来。
没有室温超导材料,可以先用零下一两百度的高温超导材料将就用着。虽然会带来设计和消耗上的问题。
控制系统,也是一样,没有合适的AI就先用一个针对性的程序先将就用着。
抵抗中子冲击的第一壁材料,也先将就着。
最后,
莫道选择的突破方向,就是更精准的等离子体模型。
这个方向,看起来最难,对于莫道来说,反倒是最有可能实现的。
材料,即便是莫道现在去研究,也不知道什么时候能够找到材料。
而等离子体模型涉及到的湍流问题。
最关键的是,莫道不需要找到一个通用的湍流模型。
他只需要找到一个基于托卡马克装置的,可控核聚变内等离子体这一单独情况的理论模型。
不管是物理还是其他领域,一个单独,特殊情况下的问题,总是更容易找到答案的。
这无疑是降低了难度。
虽然这也会存在问题,比如影响可控核聚变堆在实现后的后续改进。
不过,都还未实现,考虑更进一步的问题,目前实在是没有意义。