《从小镇做题家到首席科学家》

第317章 解决BSD猜想的思路!(第5页)

上页目录存书签下页

一连数天,周易都没有进度,这让周易有些着急。

但是急也没用,有时候灵感不来,就是没有办法。

周易暂时放缓了一下进度,在院子里晒晒太阳。

时不时与梅纳德打个电话联系一下,探讨一下。

梅纳德也是数论领域的专家,拿过菲尔兹奖的人,慻

与他们多交流,也许能够碰撞出一点火花。

这一天,梅纳德在周易家院子里与周易说道:

“既然周易你现在有些卡壳,不如研究一下与BSD有联系的有一个古老的数论问题,叫作同余数(gruentnumber)问题。”

周易听完,带着一丝疑惑的语气说道:

“同余数问题!?”

梅纳德说道:

“从这个问题入手,看能找到一丝灵感不?”慻

随即梅纳德简单的介绍说道:

“一个正整数n叫做同余数,是指n是三边a,b,c均为有理数的直角三角形的面积。”

说到了这里,梅纳德拿起了一支粉笔在院子的黑板上写到,

“周教授,你看这里,”

【n=6和5为同余数,因为(a,b,c)可分别取(3,4,5)和(32,203,416)。】

梅纳德写完继续说道:

“所以不难看出,对每个正整数m,m^2n是同余数当且仅当n是同余数,从而不妨假设n是无平方因子的正整数。慻

同余数问题即是决定出全部同余数。”

周易听到这里也知道梅纳德的意思,说道:

“也就是说其余正整数就是非同余数。”

梅纳德暗叹周易的天赋恐怖,说道:

“是这样的,周教授。

这个问题起源于公元11世纪的阿拉伯,至今已决定出许多同余数和非同余数,但是整个问题没有完全解决。”

听到了这里,周易眼眸之中散发着一丝光彩,带着极其自信的语气说道:慻

“那么我们瞬间可以知道,同余数问题与椭圆曲线之间的联系是:

n为同余数当且仅当椭圆曲线En:y2=x^3-n^2x的秩≥1,即此方程有无穷多有理数解。”

上页书页存书签下页