《从小镇做题家到首席科学家》

第248章 《周易的数学原理》(第3页)

上页目录存书签下页

是不是要欺师灭祖?

周易这一招,直接把自己放在了最强的位置。

一旦这些人认识到数学对于《周易》的革新,那么《周易》到底是玄学还是数学,就不好说了。

接下里周易才开始叙述起来数学对于周易的发展,

从集合论与《周易》的关系说起。

周易开始说道:

“集合论是现代数学的基础,它不仅渗透到了数学的各个领域,也渗透到了许多自然科学和社会科学的领域。

德国数学家康托(G。tor,1845~1918)首先提出了集合的概念,他于1872~1897年间发表了一系列关于集合论的论文,奠定了集合论的基础。”

周易先解释了一下集合论的来历,也为接下来的做准备,只见周易继续说道:

“《系辞》说:‘方以类聚,物以群分。’

这里所说的‘类’与‘群’就与数学中的‘集合’概念非常接近。

易学研究中的许多命题,用集合论的语言来描述,就会更加方便、清楚和精确,有利于揭露问题的本质。

本章先介绍集合论的一些基本概念,然后说明易学问题与集合论中的一些基本概念的联系。”

随后周易把这一大章分成了四个小节来叙述。

。。。

“定义2。2。3:

设A_1,A_2,…,A_n。是n个集合,在A_1中取兀系α_1,在A_2中取元素α_2,…在A_n中取元素α_n,

作成一个有序的n元素组(a_1,a_2,…,a_n,),称为集合A_1,A_2,…,A_n的一个n元序组。A_1,A_2,…,A_n的所有n元序组所成的集合:

D={(a_1,a_2,…,a_n)丨a_1∈A_1,a_2∈A_2,…,a_n∈A_n}

称为集合A_1,A_2,…,A_n、的笛卡儿积,记作:

D=A_1*A_2*。。。*A_n。

特殊情况:若A_1=A_2=…=A_n=A时,则称D为A的n重笛卡儿积。

A_1*A_2*。。。*A_n的一个子集R,称为集合A_1,A_2,…,A_n的一个关系。

易学研究中的许多概念与集合的关系这一概念有密切的关系,

我们随便举一个例子,相信各位风水师必然是十分了解。

这里应该是例题2。2。1了。

古书《系辞》说:‘易有太极,是生两仪。两仪生四象,四象生八卦。’

又说:‘八卦成列,象在其中矣。因而重之,爻在其中矣。’

上页书页存书签下页